- Tout
- Actes de conférences
- Biomécanique
- Environnement
- Informatique et mathématiques appliquées
- Mathématiques
- Mécanique
- Physique
- Sciences de la santé
- Sciences de la Terre
- Sciences humaines et sociales
Physique
OPS
[Open Plasma Science]
OPS
Open Plasma Science
Créée en 2023, Open Plasma Science est une revue à comité de lecture portée par l’Université de Lorraine. Elle publie en anglais des articles couvrant la science des plasmas au sens large, allant des plasmas de fusion aux plasmas de décharges haute et basse pression, des interactions plasma-surface ou plasma-liquide à la turbulence dans les plasmas, de la propulsion aux procédés d’élaboration utilisant les plasmas.
- Directrice de la publication : Hélène Boulanger
- Rédacteur en chef : Jérôme Moritz
- Type de support : électronique
- Périodicité : au fil de l’eau
- Année de création : 2023
- Date de mise en ligne sur Episciences : 2023
- eISSN : 3076-1468
- Disciplines : physique des plasmas
- Langue de publication : anglais
- Procédure d’évaluation : évaluation en simple aveugle
- Licence CC BY 4.0
- Éditeur : Université de Lorraine
- Adresse postale : Institut Jean Lamour, Campus Artem, 2 allée André Guinier, BP 50840, 54011 Nancy Cedex
- Pays : France
- Contact : ops AT episciences.org
Derniers articles
FEQIS: A free-boundary equilibrium solver for integrated modeling of tokamak plasmas
A new axisymmetric equilibrium solver has been written, called FEQIS (Flexible EQuIlibrium Solver), which purpose is to be used inside integrated modeling of tokamak plasmas. The FEQIS code solves the Grad-Shafranov equation and the "circuit" equations for the external coils and passive conducting structures that are toroidally connected. The code has been specifically equipped with flexibility in choice of circuit connections, and a stripped-down numerical scheme for the solution of the Grad-Shafranov equation through a structure of multi-level simplifications which can be tested against the required accuracy.
Fable, E.
24 février 2025
Lire l'article
Impurity Parallel Velocity Gradient instability
In magnetized plasmas, a radial gradient of parallel velocity, where parallel refers to the direction of magnetic field, can destabilise an electrostatic mode called Parallel Velocity Gradient (PVG). The theory of PVG has been mainly developed assuming a single species of ions. Here, the role of impurities is investigated based on a linear, local analysis, in a homogeneous, constant magnetic field. To further simplify the analysis, the plasma is assumed to contain only two ion species - main ions and one impurity species - while our methodology can be straightforwardly extended to more species. In the cold-ion limit, retaining polarization drift for both main ions and impurity ions, and assuming Boltzmann electrons, the system is described by 4 fluid equations closed by quasi-neutrality. The linearized equations can be reduced to 2 coupled equations: one for the electric potential, and one for the effective parallel velocity fluctuations, which is a linear combination of main ion and impurity parallel velocity fluctuations. This reduced system can be understood as a generalisation of the Hasegawa-Mima model. With finite radial gradient of impurity parallel flow, the linear dispersion relation then describes a new instability: the impurity-modified PVG (i-PVG). Instability condition is described in terms of either the main ion flow shear, or equivalently, an effective flow shear, which combines main ion and impurity flow shears. Impurities can have a stabilising or destabilising role, depending on the parameters, and in particular the direction of main flow shear against impurity flow shear. Assuming a reasonable value of perpendicular wavenumber, the maximum growth rate is estimated, depending on impurity mass, charge, and concentration.
Bourgeois, Jeanne
29 octobre 2024
Lire l'article